Pointwise Convergence Theorems for Self-Adjoint and Unitary Contractions
نویسندگان
چکیده
منابع مشابه
Lecture Vi: Self-adjoint and Unitary Operators
De nition. Let (V, 〈 , 〉) be a n-dimensional euclidean vector space and T : V −→ V a linear operator. We will call the adjoint of T , the linear operator S : V −→ V such that: 〈T (u), v〉 = 〈u, S(v)〉 , for all u, v ∈ V . Proposition 1. Let (V, 〈 , 〉) be a n-dimensional euclidean vector space and T : V −→ V a linear operator. The adjoint of T exists and is unique. Moreover, if E denotes an orthon...
متن کاملStability and convergence theorems of pointwise asymptotically nonexpansive random operator in Banach space
In this paper, we prove the existence of a random fixed point of by using pointwise asymptotically nonexpansive random operator and the stability resultsof two iterative schemes for random operator.
متن کاملInterpolation Theorems for Self-adjoint Operators
We prove a complex and a real interpolation theorems on Besov spaces and Triebel-Lizorkin spaces associated with a selfadjoint operator L, without assuming the gradient estimate for its spectral kernel. The result applies to the cases where L is a uniformly elliptic operator or a Schrödinger operator with electromagnetic potential.
متن کاملThe Spectral Theorem for Self-Adjoint and Unitary Operators
(1.1) (Au, v) = (u, A∗v), u, v ∈ H. We say A is self-adjoint if A = A∗. We say U ∈ L(H) is unitary if U∗ = U−1. More generally, if H is another Hilbert space, we say Φ ∈ L(H,H) is unitary provided Φ is one-to-one and onto, and (Φu, Φv)H = (u, v)H , for all u, v ∈ H. If dim H = n < ∞, each self-adjoint A ∈ L(H) has the property that H has an orthonormal basis of eigenvectors of A. The same holds...
متن کاملApproximate fixed point theorems for Geraghty-contractions
The purpose of this paper is to obtain necessary and suffcient conditionsfor existence approximate fixed point on Geraghty-contraction. In this paper,denitions of approximate -pair fixed point for two maps Tα , Sα and theirdiameters are given in a metric space.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 1977
ISSN: 0091-1798
DOI: 10.1214/aop/1176995773